
J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2B 

GRAM-SCHMIDT ORTHOGONALIZATION PROCEDURE AND 

CONSTRUCTION OF TWO-BODY BOUND STATE WAVE FUNCTIONS 

Shwe Sin Oo
1
, Khin Maung Maung

2
 

Abstract 

Gram-Schmidt procedure for orthogonalizing vectors or functions is well known. But it is not 

straight forward to orthogonalize a large set of vectors or functions. We show how this can be 

accomplished by starting with a set of non-orthogonal set of basis functions. Once orthogonalized, 

they are  normalized so that we have an ortho-normal set of functions. In order to test our 

functions, they are used as the basis set in expanding the wavefunction of a bound state 

Schrodinger equation with a specific potential.   For test potentials, we use the harmonic oscillator 

potential and linear potential. The eigen energies and wavefunctions obtained are compared with 

analytical results for harmonic oscillator potential. For the linear potential, we compare with the 

standard numerical results. We also compare with the results obtained by using some known 

ortho-normal basis set of functions. 

 Keywords: Orthogonalization, basis functions, bound state, wavefunctions 

Introduction 

Orthogonal set of functions are very useful in many situations. In solving quantum 

mechanical equations for eigen-energies and eigen-functions, either in position space or in 

momentum space, basis function expansion methods is commonly applied. If the basis set of 

functions do not form an orthogonal set, the basis function expansion does not render the eigen-

equation into a simple matrix eigen-equation. There are many well known orthogonal set of 

functions, such as the harmonic oscillator basis, Gauss-Lagauree basis, Jacobi polynomial basis 

and others, but computational time becomes prohibitively large when we do calculations in three 

or four body systems. Therefore, in this paper, we study a few simple functions which can be 

orthogonalized by using Gram-Schmidt orthogonalization procedure. 

Gram-Schmidt Orthogonalization Procedure 

In this section, we outline the Gram-Schmidt orthogonalization method. We first start 

with a set of vectors                       . These vectors  do not form an orthogonal set, 

but  they are normalized. i.e               . Next we want to construct an orthonormal set 

                      with the property that               . 

We first start by setting              .  Where        Then we define 

          (                

Where    is the constant to be found. We accomplish this by requiring that     is orthogonal to 

     . 

This gives  

             (                   
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Next we find the normalization constant    by using the normalization condition 

            (   
 (                  (                   

This gives 

   
 

√                
 

Continuing in this manner, we obtain 

        (       ∑           

   

   

  

          ∑                     
 

 

     

 

 

Now by using the last two equations, we can construct a new ortho-normal set        . 

For practical calculations, it is convenient to derive a recursion relation for 

                     . By projecting with      on      we obtain, 

            (   |      ∑                 

   

 

 

or, in terms of     

      (     ∑         

   

   

 

And the normalization constants are given by  

          ∑                    
 

 

 

     

 

 

Note that, here              the overlaps among the original set of vectors     's. And also 

note that           must hold. Now the procedure is clear. First we generate all the overlaps 

    of the non-orthogonal vectors     's.  Then we generate the     's and the normalization 

constants    's starting with      . Then we can generate all the vectors in new orthonormal 

set         . 

Orthogonalzing functions 

Indefining or thogonality of functions, one usually define it with respect to a chosen 

weight.  Let us first define the relation between our vectors and functions on the real line   .  We 

will consider the case where both domain and the range of our functions is    . We define our 

functions by 

  (            

  (           
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We demand that our   (   are normalized and our   (   are orthonormal. i.e 

∫   (    (       
 

 

     

Here w is the weight function and we choose     . In many physics applications, where the 

domain of the function is the three dimensional space, the weight function w is    which is part 

of the volume element in 3-dimensional case. For one-dimensional case, w is usually taken to be 

unity..i.e w=1.  

Example set of functions 

The set of functions that we choose to test our Gram-Schmidt procedure is a set of non-

orthogonal Gaussian functions which are already normalized. They are given by 

  (   
 

(  
 

 

(   
 

     (    
   

Where         Here we choose       , where b is a parameter to be chosen. For example 

b=0.01 . The index iruns from 1 to N, where N is the number of functions to be orthogonalized. 

The overlap of these functions   (  are 

    ∫   (    (   
   

 

 

 
√ 
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With      . Note that here we are using      which will be suitable for realistic 3-

dimensional quantum mechanical calculations. We can also use w=1 for 1-dimensional problems 

such as 1-dimensional harmonic oscillator.  
 

Application 

We consider two applications. The first one is the 1-dimensional harmonic oscillator 

problem. The solution is well known and is given as a half-integer multiple of         Since the 

exact ground state wave function of the harmonic oscillator problem is a simple Gaussian, our 

calculations yield the exact results with even a few number of basis functions. The interesting 

one is the Schrodinger equation with linear potential. i.e.  (      where A is the strength of 

the potential. This potential is usually used as the confining potential for the bound states of 

quarks or in meson spectra where meson are described as bound states of a quark and an anti-

quark. Here we choose to solve in momentum space. The Schrodinger equation in momentum 

space for l
th

 state can be written as 

  

  
  (   ∫   (   

    ( 
              (   

 

 

 

 

Here   (   
   is the l

th
 partial wave component of           which is the Fourier transform of 

the position space potential  (  . i.e  

          
 

    
∫  (     (       
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      (   
     ∫           (    

 

  
 

For l=0  

        (   
   

 

      

 

 
   (  (     (        

Where      
    

     

Fourier was done by first introducing a damping factor in the potential i.e (          (     

where   is the damping factor which was taken to be zero later. To take care of the singularity in 

the potential, the substraction procedure of Maung et al .In order to solve this equation we 

expand the wave function in our ortho-normalized basis set 

  (   ∑    (  

 

 

After this expansion, and by projection with   (   
  and integrating over   we obtain a matrix 

eigen value equation 

           

Where the matrix     is given by 

    ∫
  

  
  (    (   

    
 

 

  ∫ ∫   (   
    (    ( 

              

Now after the matrix     is calculated, we can solve the matrix eigenvalue equation. The usual 

eigen-routines provides us with the energy eigen-values and eigen-vectors whose components are 

the expansion coefficients   
  . With the strength of the linear potential A=1GeV

2
,mass m=1 

GeV the exact energies of this eigen-equation are the roots of the Airy's functions. The wave-

functions can be constructed once the expansion coefficients   
   are found. 

We present our results in the following table. Here we use b=0.2 Note that b is the 

variational parameter which is chosen to minimize the eigen energy. As the number of basis 

function used is increased, the value of b becomes unimportant.  

 

 N=4 N=10 N=18 

Exact answer [2] 

Ref. [3,4] 

20 functions 

Ground State 2.3506473 2.33810741 2.33810741 2.33810741 

1st excited state 4.6909371 4.08794945 4.08794944 4.08794944 

2nd excited state 9.8607089 5.52056779 5.52055983 5.52055983 

3rd excited state 28.625702 6.79152313 6.78670809 6.78670809 

4th excited state  8.09869283 7.94413359 7.94413359 

 

 

 



J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2B 155 

Conclusion 

We have presented Gram-Schmidt orthogonalization procedure which is useful in 

quantum mechanical calculations. We derive a recursion relation for the overlap functions 

       which is useful in the calculation. We constructed an orthonormal basis set of functions 

from a previously defined set of functions which are not mutually orthogonal. We used these 

orthonormal set of functions in solving the Schrodinger equation in momentum space with linear 

potential. We obtained very satisfactory results. 
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